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A numerical method is presented for calculating the transient flow of a homogeneous 
two-phase (gas-liquid) fluid at small Mach numbers. The method is Eulerian and is 
applicable in one, two, or three space dimensions. The density ratio of the two phases 
may be arbitrarily large, enabling the important special case of steam-water flow at low 
pressures to be treated. The phase interface is resolved by using a modified donor- 
acceptor differencing technique for computing mass transport. Inaccuracies resulting 
from slightly inconsistent calculations of mass and energy transport are avoided by 
converting the energy equation into a form which does not involve a convective de- 
rivative. A nonconservative form of the momentum equation is utilized because velocity 
is typically a smoother function than momentum density when the phase density ratio is 
large. The results of two sample calculations are presented. 

1. INTRODUCTION 

A number of problems of practical importance involve the low-speed flow of a 
single-component two-phase fluid with a large phase density ratio and a moving 
phase interface. In nuclear reactor safety analysis, for example, such problems 
arise in connection with (a) the reflooding of a steam-filled reactor core following 
a loss-of-coolant accident by liquid water from the emergency core cooling system, 
and (b) the venting of steam into a liquid water suppression pool having a free 
surface. This paper presents a new numerical technique for solving problems of 
this general type. 

The numerical solution of such problems is hindered by the fact that the field 
variables do not vary slowly in comparison with practical finite-difference mesh 
spacings-enormous gradients of density and internal energy occur at the phase 
interface. In general, even moderately large gradients are known to lead to in- 
accurate results in Eulerian fluid flow calculations because of excessive numerical 
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diffusion or smearing [l, 21. In addition, large density and energy gradients, in 
combination with slight numerical discrepancies between the mass and energy 
transport calculations, can cause unacceptable errors in the calculated pressure and 
velocity [3]. In the present context, the gradients are so extremely large that special 
care must be taken to avoid these problems. The numerical technique described in 
this paper has been specifically designed to eliminate these particular sources of 
error, and still retain the simplicity of a basically Eulerian formulation. 

A number of methods have been described for the numerical treatment of fluid 
interfaces; Ref. [4] and references cited therein discuss a number of these methods. 
Most of these methods are somewhat complicated and cumbersome to implement, 
and are not directly applicable to single-component two-phase interface problems, 
in which mass exchange between phases may spontaneously occur during the flow 
process. The method we have adopted to represent the phase interface without 
numerical smearing is to compute mass transport by a modified donor-acceptor 
(DA) differencing procedure [5, 61. The DA technique was chosen for two reasons: 
(1) It is easy to incorporate into the framework of an Eulerian computing method; 
and (2) it is easy to adapt to the single-component two-phase case, and requires no 
explicit modification to allow for phase transitions. The disadvantage of the DA 
technique is that, unlike the other interface techniques, it does not resolve the 
interface in detail within a computational cell. For this reason it is not very suitable 
for calculating physical effects (such as surface-wave instability) whose accurate 
representation requires a detailed knowledge of the interface configuration. This 
limitation can in principle be overcome (except for surface tension effects) by using 
very fine zoning. 

The use of donor-acceptor differencing to prevent interface smearing is an 
essential feature of our method. Another essential feature is the conversion of the 
energy equation into a form which does not involve a convective derivative. This 
approach appears to be novel; it has the advantage of eliminating any possibility 
of numerical inconsistencies between the mass and energy transport calculations. 
The pressure and velocity errors which might otherwise arise from this source are 
thus rigorously prohibited. 

Another somewhat unusual feature of our method is the use of a nonconservative 
difference analog of the momentum equation. This procedure was adopted because 
in problems of present interest the velocity u varies much more slowly in space and 
time than does the momentum density pu. Overall accuracy is thereby enhanced 
considerably, in spite of the loss of rigorous momentum conservation. 

Because of the manner in which the momentum and energy equations are 
treated, donor-acceptor differencing is needed and used only in the continuity 
equation. 

The remainder of our numerical technique is more or less conventional, and is 
closely related to the Chorin-Hirt modification of the MAC method for incom- 
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pressible flow [7]. The pressure gradient in the momentum equation, the velocity 
in the continuity equation, and the velocity divergence in the energy equation are 
treated implicitly. The remaining terms in the equations are treated explicitly. The 
implicit part of the scheme is solved by an iterative procedure very similar to that 
of Hirt and Cook [7]. A detailed description of the method is given in the sub- 
sequent discussion and is followed by two sample calculations. 

2. THE BASIC EQUATIONS 

The basic equations for the transient flow of a single-component homogeneous 
two-phase (gas-liquid) fluid are 

DplDt = -pV . U, (1) 

t@Wt) = --VP + v - 7 + pg, (2) 

p(DI/Dt)=-pv*u-f-T:vu-v.J, (3) 

P = f(P, 0, (4) 

where p is the mass density, u the velocity, p the pressure, ‘c the viscous (deviatoric) 
stress tensor, g the acceleration of gravity, I the specil?c internal energy, and J the 
heat flux vector. The symbol D/Dt represents the convective derivative a/at + u . V. 
Equations (1) through (4) must of course be supplemented by constitutive equa- 
tions for 7 and J, normally the Newtonian Law for T and the Fourier Law for J. 

The state relation, Eq. (4), applies in both the single-phase and the two-phase 
regions. The derivatives (ap/aI), and (ap/ap), are discontinuous at the boundary 
between these regions. Several auxiliary state variables and relationships exist. For 
any pressure p less than the critical pressure, the liquid and gas saturation densities 
p&(p) and p,(p) are well defined. The quality x and void fraction 01 are then defined 
in terms of the saturation densities by the relations 

CL=0 if p 2 pz , 

= (P - Pd/(PIJ - PJ if ps < P < PI , 
= 1 if P d pg , 

x = [l + (PJPXll4 - W’. 

(5) 

(6) 

The local mass fraction of the gas phase is X, and the local volume fraction is ar. 
We now wish to express the energy equation, Eq. (3), in an alternative form 

which will be convenient for numerical solution by finite-difference methods. By 
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substituting Eq. (4) into Eq. (1) and using Eq. (3) to eliminate DIjDt, the following 
net result is obtained: 

(I’+($-p2] = (%),(T: Vu- V-J) 

(7) 

Equation (7) is really a combination of the energy, continuity, and state equations. 
In this paper it is regarded as an equivalent form of the energy equation because 
it is used to replace Eq. (3) while Eqs. (1) and (4) are retained. 

At this point attention is explicitly restricted to the case of small Mach number. 
This case may be realized by assuming the isentropic sound speed C = (QJ/+):‘~ 
to be very large. This assumption, together with the thermodynamic relation 

f@fPPMP(~f/~~>, - p21-l = - MPC2), (8) 
implies that the last term in Eq. (7) becomes negligibly small and can be omitted. 
Equation (7) then reduces to 

V . u = [p - p”@Z/+),]-’ (T : Vu - V . J), (9) 

which may be regarded as an incompressibility condition. 
When p is independent of I (or, alternatively, in the absence of viscosity and heat 

conduction), Eq. (9) reduces to V * u = 0, the usual incompressibility condition 
for the case in which p is constant for a given fluid particle. Equation (9) is the 
generalization of this condition to allow for local thermal expansion or contraction. 
This interpretation becomes intuitively clear when it is noted that ‘c : Vu - V * J 
is the local volumetric rate of energy buildup, and that 

P - f2@Vf), = ww, , (10) 

where h is the specific enthalpy and v = l/p is the specific volume. 
The basic equations for the transient flow of a single-component homogeneous 

two-phase fluid at small Mach number may now be taken to be Eqs. (l), (2), (4) and 
(9). The restriction to small Mach numbers implies that the local fluid velocity 
must be small relative to the sound speed in both phases for these equations to be 
applicable. 

3. THE NUMERICAL SCHEME 

The numerical solution of Eqs. (l), (2), (4), and (9) is effected by constructing 
fnrite-difference analogs of them; the resulting finite-difference equations are then 
programmed for solution by a high-speed digital computer. It is convenient for 
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clarity to begin by exhibiting the temporal differencing of Eqs. (l), (2), (4), and (9) 
explicitly while suppressing the spatial differencing: 

( 
"71fl _ "" 

P" At 
+un*nP 

1 
= -Vp*fl+V.T~$png, 

v * un+1 = Tn : VIP - v - J” 

P” - W” (Wp); ’ 

(11) 

(12) 

P n+1 - n 

At 
p + v * (pw+l) = 0, (13) 

P St1 =f(pn+l, p+l), (14) 

where At is the time increment and A” denotes the difference analog of the quantity 
A at time ndt. All spatial derivatives in Eqs. (11) through (13) are to be replaced by 
spatial differences in a manner to be described presently. The sequence of a cal- 
culational cycle is as follows. Equations (11) and (12) are first solved 
simultaneously, by an iterative procedure, to obtain pn+l and un+l. Equation (13) 
is then solved for p n+l. Finally, P+l is obtained by inversion of Eq. (14). 

With the exception of the convective term V * (pnrP+l) in Eq. (13), which is 
differenced according to a modified donor-acceptor rule, the spatial differencing 
of Eqs. (11) through (13) is closely patterned after that of [7], a paper with which 
the reader is assumed to be familiar. The region of computation is divided into 
small finite-difference cells of dimensions Ax, Ay, and AZ and labeled by integer 
indices (i, j, k). The thermodynamic variables p, p, and I are defined at cell centers 
whereas the velocity components (u, u, w) are defined at cell faces. 

Except for two minor differences, the spatial differencing of Eq. (11) is identical 
to that of the corresponding equation in [7], and hence will not be displayed in 
detail. The first difference is that the density is not constant in the present context; 
the densities in Eq. (11) are evaluated at the cell face on which the velocity com- 
ponent in question is defined, by averaging the adjacent cell-centered densities. 
For example, in the calculation of u:,$& the density pn in Eq. (11) is evaluated 
as 

The second difference is that, unlike Hirt and Cook, we do not limit ourselves to 
centered space differencing of the convective terms in Eq. (11). Instead, a weighted 
average between centered and donor-cell differencing [3,8] is allowed. The weight- 
ing factor may be chosen to nullify a destabilizing truncation error [3,9] so that 
viscosity is no longer required for numerical stability. 

Equation (12) is evidently a cell-centered equation; all terms in it are evaluated 
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at cell centers, the spatial derivatives being represented by simple centered dif- 
ferences. For example, 

where the notation [Ali, represents the spatial difference approximation to the 
quantity A at the center of cell (i, j, k). 

The iterative procedure by which the simultaneous solution of Eqs. (11) and (12) 
is effected is essentially identical to that of Hirt and Cook. At the beginning of the 
iteration an explicit advancement of the velocity components is performed, which 
serves to evaluate the terms at time level n in Eq. (11). The iteration then proceeds 
by simultaneous adjustments of pressure and the velocity components to make the 
velocity divergence satisfy Eq. (12). The pressure change in a given cell over one 
iteration is given by 

where Dijk is the current value of the velocity divergence and SE, denotes the 
spatially differenced form of the right-hand side of Eq. (12). As recommended by 
Viecelli [IO], Dijt is evaluated using all available new velocity iterates to accelerate 
convergence. The weighting factor /3 is given by 

where 0 < &, < 2 for iteration convergence. With this weighting factor the 
iteration scheme becomes equivalent to the successive over-relaxation method as 
applied to the associated Poisson-like pressure equation. The velocity components 
are changed in correspondence to each pressure change, as required by the momen- 
tum equation. The iteration is terminated when the largest value of 1 Spijk 1 in the 
mesh falls below a specified cutoff value, typically 1O-6 to 1O-6 of the maximum 
pressure in the problem. Boundary conditions are reset after every iteration in 
essentially the same manner as described by Hirt and Cook. 

After the iteration has converged, u n+l is known and Eq. (13) can be solved 
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explicitly for py$‘. The term V * (p?P+l) in Eq. (13) is spatially differenced by 
writing it in terms of mass fluxes across cell faces: 

+ -& (B~j+l,z.k”:;;1,2,k - B,‘,i-l,2,k”:;:l,2.k) (18) 

1 
+ &- (B~,j.k+1,2”~~~k+l,2 - ~~j,k-l,2W~~,lk-l,,), 

where the face-centered densities 3 represent the density of mass actually being 
transported across the cell face in question. This prescription for mass transport is 
conservative regardless of how the fi are del%red. We choose to define the 3 by a 
modified donor-acceptor rule. The guiding principle of donor-acceptor ditferencing 
may be generally stated as follows: in computing transport of a mixture quantity 
from a donor cell to an acceptor cell, the single-component or -phase values are 
determined by the donor cell whereas the composition or proportions are deter- 
mined by the acceptor cell. 

In a single-component two-phase mixture, the mixture density p is related to the 
phase densities pz and ps by 

P = % + (1 - 4 pz , 

which follows from Eq. (5). Thus in dealing with density 01 can be regarded as 
determining the composition of the two-phase mixture. Clearly 01 may be considered 
as a cell-centered quantity 01;~ , defined by Eq. (5) with p replaced by pzk and with 
pr and pg replaced by p(&) and p,(p&), respectively. With this background, our 
donor-acceptor prescription for p can be mathematically expressed as 

t%l,2Ak = PDlz ifol,“=Oorac,“=lorIolDIZ--OIAnj<O.OO1, 
(19) 

= %172p;D + (1 - %inl pzb otherwise, 

where the subscripts D and A, which denote the donor and acceptor cells, are 
defined by 

D = (i,j, k) 
A = (i + l,j, k) I 

if zP+l z+l/Z.j,k > ‘2 

(20) 
D = (i+ l,j, k) 
A = (i,j, k) 

if ul”+l t+1/2.j.k < ‘* 

The densities $zj+r/2,k and rGT,j,k+1,2 are of course defined by similar expressions. 
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The preceding prescription is a physically reasonable way to prevent interface 
smearing. For example, if D is a two-phase cell and A is a pure gas cell then 
a‘p = 1 and 6” = prD. That is, pure gas is transported into a pure gas cell from a 
two-phase cell until all the gas in the two-phase cell is exhausted. 

The condition on I (II~~ - aAn 1 in Eq. (19) is a cutoff constraint which causes the 
transport between two adjacent cells of nearly the same composition to be com- 
puted by a pure donor-cell procedure even when the donor cell D is in the two- 
phase region. Failure to include such a cutoff can result in the spontaneous develop- 
ment of large density gradients in two-phase regions where the liquid and gas 
phases are well mixed and would be expected to remain so, but where persistent 
gradients in p (and hence in pz and p,) exist. 

One further constraint must be added to the mass transport logic outlined above. 
The case in which D is a two-phase cell and A is a pure gas cell is again considered, 
but with aDn assumed to be much smaller than I u I At/Ax. In this case the donor- 
acceptor prescription as described would transport more gas out of D than D in 
fact contained; the net effect would be to leave too much liquid mass in D. In this 
way the cell D would become “overfilled” with liquid and would be forced un- 
physically to move into the subcooled region (p > pc). Similarly, if A is a pure 
liquid cell and 1 - olDn < j u 1 At/Ax, the donor-acceptor prescription would 
transport too much liquid out of D, leaving it with an unphysically small (perhaps 
even negative) density. In order to avoid these problems, the density of a cell is not 
allowed to change from a two-phase value to a subcooled or superheated value 
during a single timestep. When such a change would otherwise occur, the density 
in question is set equal to the saturation value. The resulting change in mass is 
compensated by an equal but opposite change in a neighboring cell, so that overall 
mass conservation is maintained. Because of the inherent lack of resolution in 
donor-acceptor interface differencing, the choice of the appropriate neighboring 
cell is not critical. 

The spatial differencing of Eq. (14) is trivial; all quantities are cell-centered and 
simply require the addition of subscripts ijk. 

Numerical stability and accuracy restrictions are essentially the same as those 
reported by Hirt and Cook [7], except that the lower limits on viscosity are 
alleviated by the use of partial donor-cell differencing in the momentum flux terms, 
as discussed above. 

The difference equations described have been programmed for solution in a 
developmental computer code. The functional relations p = f(~, I>, pi(p), and 
pg(p) are evaluated numerically by a table lookup and interpolation procedure 
developed by R. J. Wagner [I I], which represents the thermodynamic properties 
of water-steam as given by the 1967 IFC Formulation [12, 131. The code can be 
applied to problems in one, two, or three dimensions in Cartesian coordinates. 
The results of two sample calculations are presented in the next section. 
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4. SAMPLE CALCULATIONS 

A simple but quite stringent test problem for the numerical technique described 
in the preceding section is that of calculating one-dimensional oscillations in water 
level in a vertical pipe of length L subject to a constant pressure drop dp, in the 
absence of viscosity and thermal conductivity. The velocity is uniform along the 
length of the pipe by virtue of Eq. (9), and hence is a function of time alone. 
Initially the pipe is filled with water of density p1 to a height H,, , and with steam 
of density pp above H, ; the initial velocity is z+, . By writing a force balance on the 
material within the pipe, we find that the motion is governed by the following 
ordinary differential equation for the water height H(t): 

d2H AP 
- = plH + p,(L - H) - g, dt2 (21) 

subject to the initial conditions H = Ho and dH/dt = a,, at t = 0. This equation 
has been solved numerically, by a standard method, for the following values of the 
parameters: 

L = 3.6576 m, Ho = 1.09728 m, 
u. = 0.0 mlsec, Ap = 1.757 x 104 N/m2, 
pc = 920.048 kg/m3, pg = 2.2325 kg/m3. 
g = 9.8 m/sec2, 

(These density values are very close to the saturation values at p = 4.137 bar.) The 
resulting time dependence of u = dH/dt is shown as the solid curve in Fig. 1, which 

3 I I I 

-31 1 I I I 
0 I 2 3 4 

f(SW) 

FIG. 1. Velocity oscillations in vertical pipe under constant pressure drop. 
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may be regarded as the exact solution. The problem is seen to exhibit oscillatory 
behavior in velocity and hence in water level. 

The same problem was run with the numerical scheme described in Section 3, at 
an ambient pressure of 4.137 bar, using 20 spatial cells (dx = 0.18288 m) and a 
timestep of dt = 0.005 sec. The resulting velocity curve is shown by the circular 
points on Fig. 1; the agreement with the exact solution is seen to be excellent. The 
velocities were not quite uniform along the pipe because of the finite iteration 
convergence criterion (for this problem, the cutoff was 1 Sp lipmax = 5 x l(P), but 
were generally uniform to within 0.5 % or better. Figure 2 is a logarithmic plot of 

30 I I I I I I I I 1 

25- 

t=o.7sec 1=1.5&?c t*2.3sec 

zo- 

XI:: 15 - 

\ 
IO- 

5- 

0 I I I I 1 1 I I 
0 I 2 0 I 2 0 I 2 3 4 

log ,dkglm’) 

FIG. 2. Logarithmic density profiles at I = 0.7, 1.5, and 2.3 sec. 

the density profiles (unsmoothed) at three different times during the calculation. 
These plots show that the calculation preserved the sharp water-steam interface 
without appreciable smearing, even though the density ratio is almost 1000: 1. 

The second test calculation is that of liquid water sloshing in a two-dimensional 
rectangular tank of length L and height H. The tank is half-filled with liquid water 
and half-filled with steam. The initial conditions are: (1) All the liquid water is in 
the right-hand side of the tank, (2) the pressure is uniform at the value p,, , and (3) 
the velocity is zero. The calculation was run with the parameter values 

L = l.Om, H = 0.5 m, 
Ax = L/20, AZ = H/IO, 
pa = 960.0 kg/m3, pg = 0.585 kg/m3, 
p,, = 1.0 bar, At = O.oO5 sec. 

Viscosity and heat conduction were neglected, and free slip boundary conditions 
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VAPOR (u = 01 
j;o.350 

LIQUID (u =O) 1 

G 

0.250 

0.150 4 
o,050 LALLLL-d-LL. -Id 

o.c60 ow 0.250 0350 0.450 0550 0.650 0.750 0.650 0950 1.050 
- = 2.00 hvsec X(M) 
TIME=O.OOO set 

FIG. 3a. Sloshing problem t = O.Osec. 

SLOSHING PROBLEM 

0.050 a,50 0.250 0.350 0.450 0.550 0.650 0.750 0.650 0.950 1.050 

- = 2.00 M/SC 
X(M) 

TIME = 0.200 set 

FIG, 3b. Sloshing problem t = 0.2 sec. 

SLOSHING PROBLEM 

0.050 ‘,‘I”, 
pCtd-C--L--. 

’ J- ’ 
0.050 0.,50 0.250 0.350 0.450 0.550 0.650 0.750 a950 0.950 !.050 

X(M) 
- = 2.00 M/set 
TIME = 0.400 set 

FIG. 3c. Sloshing problem t = 0.4 sec. 
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0050 0150 ozw 0.350 0,450 0,550 a650 0.750 0.650 0.950 1.050 
-w=zw M/s% 
TIME =0.600 see 

XIMI 

FIG. 3d. Sloshing problem t = 0.6 sec. 

SLOSHING PROBLEM 

0050.0.150 0.250 0.350 0.450 0.550 0.650 0.750 Q650 0.950 I.050 

- = 2.00 *M,rec x (M) 
TIME= 0.600 set 

FIG. 3e. Sloshing problem t = 0.8 sec. 

SLOSHING PROBLEM 

- . . . . 0.150- ,...._....._-.,.... 

_ . ._ . - - - - _ - - - - i_ . . . o,050 

0.050 0.130 0250 0.350 0.450 0.5M) 0.650 0,750 0850 O.!XSJ 1.050 

- =2.00 wsec XIMI 
TIME = 1.000 5s 

FIG. 3f. Sloshing problem t = 1.0 sec. 

581/21/4-6 
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were imposed. Thus, if no numerical damping were to occur, the sloshing would go 
on forever. 

The development of the motion out to t = 1.0 set is shown in Fig. 3, which 
shows combined velocity vector plots and interface configuration plots. The 
interface configuration was plotted by hand from the computer output according 
to the following procedure. Any cell with pB < p < pL is an interface cell. Within 
each interface cell the interface was represented by a straight line parallel to one of 
the two coordinate directions. Since the volume fractions of liquid and gas are 
known [Eq. (5)], this line is constrained to four possible locations. Of these four 
possibilities the one was chosen which appeared visually to be the most realistic in 
its relation to neighboring cells. (For example, the liquid in an interface cell was 
taken to be contiguous with the liquid in neighboring cells whenever possible.) 
This procedure results in a “staircase” interface pattern, and was adopted here for 
two reasons: (1) it minimizes subjectivity in the plotting, and (2) it emphasizes the 
fact that the DA technique does not resolve the interface in detail within a com- 
putational. cell. Of course, the “staircase” interface plots could legitimately be 
smoothed further, if desired, by any procedure which preserves the volume fractions 
of liquid and gas in the interface cells. 

No analytical solution is available for this problem, but the numerical results 
displayed in Fig. 3 clearly show the qualitative sloshing behavior which would be 
expected intuitively. 

The velocity vectors in Figs. 3d through 3f appear to show an incipient instability 
near the interface. Fortunately, the irregularities do not grow appreciably following 
their initial appearance, and thus never become large enough to be troublesome. 
This behavior may reflect the fact that DA differencing is nearly equivalent to 
calculating mass fluxes by total acceptor differencing at the interface and donor-cell 
differencing elsewhere, and thus would be expected to be locally unstable at the 
interface. To show this near equivalence, a problem is considered in which the 
velocity is parallel to the interface and constant and pressure (and hence pI and pg 
as well) is constant in space and time. The interface is assumed to be nearly 
horizontal in cells Z(n), Z(n) - 1, and Z(n) + 1 at time level n. For this case, it is 
easily verified that the donor-acceptor differencing prescription reduces to 

p;+l - pin + &?+1 - Pin ----zzz 
At Ax 

0 [i = WI, 

where we have assumed that u > 0. However, the-local instability resulting from 
the use of acceptor difl’erenCing at the interface would be expected to be bounded 
by the coupling to neighboring cells, where local disturbances are strongly damped 
by the donor-cell differencing. Thus it is reasonable to expect global stability of 
the calculation as a whole, as is observed in practice. 
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The velocity vectors and interface configuration at t = 2.0 set are shown in 
Fig. 4. Here the noteworthy features are the presence of isolated “drops” and 
“bubbles” on the order of one cell width in diameter. Although the gross motion 
continues to be realistic, the DA technique is inherently incapable of correctly 
representing the motion of single-cell drops or bubbles. The nature of this deficiency 

SLOSHING PROBLEM 

t- 

. 
r . cc--w+------ -* . \ , 

0.450 , , , , ,.,‘--T--t---c -. x - - ‘ 1 , 
-1 
, 

0.150 
tT,...----------.,..r 

o,05Jl.,- I‘ .Imr:mL:m,cl-,- I- ,:I- ,- I- ,- I- ,’ I’, j 
0050 0.150 0.250 0.350 0.450 0.550 0550 0750 0850 0.950 1.350 

YlMl 
- =2.00 M/ret 
TIME= 2.000sec 

FIG. 4. fkd-iing problem t = 2.0 sec. 

can be seen by considering a one-dimensional problem in which velocity and 
pressure are constant in space and time. The initial condition is considered to be 

fj” = ~OPU + (1 - ao) Pz 3 j=J (0 -=c 010 -==c 0, 

= Pz 9 j # J. 

Now the value of pj after n timesteps is considered. According to the DA differenc- 
ing procedure, this value is given by 

Pi” = %lpg + (1 - ao) pz 7 j = J, 

= PZ8 j # J, 
(22) 

for all n. Physically, however, the bubble should simply translate with velocity U. 
The correct value for pin when IZ 2 udt/flx is, therefore, 

pJn = flz . (23) 

From Eq. (22) it is seen that the bubble has remained stationary for all time, 
instead of moving an additional distance u dt as it should have for each time step. 
This difficulty may be regarded as a result of inadequate finite-difference resolution: 
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one cannot expect to accurately represent the motion of a drop or bubble with a 
single cell. If the zoning were refined so that the bubble occupied many cells then 
the DA technique would again compute essentially correct mass fluxes and hence 
correct bubble motion. 

5. CONCLUDING REMARKS 

We have described a numerical method for calculating single-component two- 
phase fluid flow problems at small Mach numbers, while maintaining the integrity 
of the phase interface. The method may easily be incorporated into the framework 
of any computer code based on the Chorin-Hirt modification of the MAC method 
for incompressible flow. 

Although we have focused attention on the case of a single-component two-phase 
fluid, the method described in this paper is equally applicable to problems involving 
the flow of two different immiscible incompressible fluids separated by a moving 
interface. Again, no restriction on the density ratio exists. To treat this case, all 
that is necessary is to replace the zone variables &zk) and p&&) by constant 
values p1 and pB , to set (+/a& = 0, and to bypass the state routine. 
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